MCDAStream: a real-time data stream clustering based on micro-cluster density and attraction
نویسندگان
چکیده
منابع مشابه
Density Based Distribute Data Stream Clustering Algorithm
To solve the problem of distributed data streams clustering, the algorithm DB-DDSC (Density-Based Distribute Data Stream Clustering) was proposed. The algorithm consisted of two stages. First presented the concept of circular-point based on the representative points and designed the iterative algorithm to find the densityconnected circular-points, then generated the local model at the remote si...
متن کاملA Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape cluster...
متن کاملDG2CEP: A Density-Grid Stream Clustering Algorithm based on Complex Event Processing for Cluster Detection
Applications such as fleet and mobile task force management, or traffic control can largely benefit from the on-line detection of collective mobility patterns of vehicles, goods or persons. A common mobility pattern is a cluster, a concentration of mobile nodes in a certain region, e.g., a mass protest, a rock concert, or a traffic jam. Current approaches require previous knowledge of the locat...
متن کاملDensity-Based Clustering over an Evolving Data Stream with Noise
Clustering is an important task in mining evolving data streams. Beside the limited memory and one-pass constraints, the nature of evolving data streams implies the following requirements for stream clustering: no assumption on the number of clusters, discovery of clusters with arbitrary shape and ability to handle outliers. While a lot of clustering algorithms for data streams have been propos...
متن کاملSOStream: Self Organizing Density-Based Clustering over Data Stream
In this paper we propose a data stream clustering algorithm, called Self Organizing density based clustering over data Stream (SOStream). This algorithm has several novel features. Instead of using a fixed, user defined similarity threshold or a static grid, SOStream detects structure within fast evolving data streams by automatically adapting the threshold for density-based clustering. It also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i2.9051